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Starting from an empirical force constant model of valence interactions and calculating by Ewald’s method
the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride
�h-BN�. The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is
discussed. It is shown by analytical methods that the longitudinal and the transverse optical �LO and TO�
phonon branches for in-plane motion are degenerate at the � point of the Brillouin zone. Away from �, the LO
branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynami-
cal matrix causes a linear increase of the LO branch with increasing wave vector starting at �. This effect is
general for two-dimensional �2D� ionic crystals. Performing a long-wavelength expansion of the dynamical
matrix, we use Born’s perturbation method to calculate the elastic constants �tension coefficients�. Since the
crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices �B and
N� contribute to the elastic constants. These internal displacements are responsible for piezoelectric and
dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are
calculated.
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I. INTRODUCTION

The experimental discovery of graphene and other free-
standing two-dimensional �2D� crystals1,2 is a milestone in
solid state physics and materials science. It has opened the
path for the synthesis of a new class of materials with novel
physical properties. The most prominent member,
grapheme—a monoatomic layer of crystalline C with hex-
agonal structure—is obtained by micromechanical cleavage
of graphite as a three-dimensional �3D� layered parent mate-
rial. Likewise the 2D hexagonal boron nitride �h-BN� is pro-
duced from 3D h-BN. Recently a single layer of h-BN has
been fabricated by controlled energetic electron irradiation-
induced layer by layer sputtering.3 While graphene is a me-
tallic conductor, 2D h-BN is a true insulator1 �3D BN has a
direct band gap in the ultraviolet region4�. Graphene and 2D
h-BN also differ from the point of view chemical bonding.
Graphene is a purely covalent material, while BN, built from
III-V elements in the periodic table, is a material with cova-
lent and partially ionic bonding. Both graphene and 2D h-BN
can be regarded as building material for one-dimensional
�1D� nanotubes �for a review see Refs. 5–7�. For many rea-
sons, knowledge of the phonon spectrum is most useful. In
case of graphene, the phonon spectrum has been determined
from in-plane inelastic x-ray scattering �IXS� on single crys-
tals of graphite.8 The experimental data allow to derive a
force constant model for the covalent bonding of graphene.8

The force constant model in turn can be used to calculate by
analytic methods elastic tension coefficients of graphene9

and to relate the latter to IXS scattering results.10 In case of
h-BN, phonon spectra have been measured by high-
resolution electron energy loss spectroscopy �HREELS�
�Ref. 11� of an epitaxial monolayer film of h-BN on Ni�111�.
Elastic constants12 and phonon dispersion relations13 of bulk
h-BN have been determined by IXS and analyzed by ab ini-
tio calculations. Theoretical work on h-BN has been moti-
vated by the fabrication of BN nanotubes.14,15 Due to the

presence of Coulomb forces, the lattice dynamics of ionic
crystals is more subtle than in the case of pure covalent
bonding.16,17 Phonon dispersion relations of 3D h-BN,18–20

of h-BN monolayers21–23 and of nanotubes22,24 have been
obtained by first principles and tight binding numerical cal-
culations. In particular Ref. 22 comprises also extensive nu-
merical results on the elastic properties of 2D h-BN.

In the present theoretical work we rather will put empha-
sis on the analytic formulation of the lattice dynamics, in-
cluding elastic and piezoelectric phenomena, within a rigid-
ion model. In that respect our work is complementary to the
previous, more computational based results on 2D h-BN. The
restriction to a rigid-ion model at this stage is justified. In-
deed so far we know of no experimental results on the lattice
dynamics of free-standing 2D h-BN which would allow us to
determine the parameters of a more sophisticated theoretical
model. As we will show, a comparison with experiment has
to be based on an extrapolation from results on 3D h-BN. On
the other hand the relatively simple rigid-ion model allows
us to treat in a rigorous way important qualitative aspects
which follow from the two-dimensionality and the hexagonal
structure of the crystal. The content of the paper is the fol-
lowing. First �Sec. II� we set up the dynamical matrix of the
2D ionic crystal as sum of a covalent forces part and an
electrostatic Coulomb part. The covalent part is constructed
with a force constant model related to the one used for
graphene.8 The Coulomb part is based on the Ewald method
applied to a 2D crystal, whereby a nonanalytic term is iso-
lated. Phonon dispersions are calculated. In Sec. III Born’s
long-wavelength method is used to calculate the elastic con-
stants �tension coefficients in two dimensions�. Special em-
phasis is put on the role of internal strains. Also the elastic
bending coefficient is calculated. A comparison of various
theoretical and experimental results is made. Next �Sec. IV�
we study piezoelectric phenomena in the 2D ionic hexagonal
crystal. In Sec. V the dispersion of the optical phonon
branches near the � point of the Brillouin zone is studied by
analytic means, the role of the nonanalytic Coulomb term
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and overbending is elucidated. Concluding remarks close the
paper �Sec. VI�.

II. PHONONS IN 2D HEXAGONAL BN

We recall some basic concepts of the lattice dynamics of
ionic crystals, adapted to the case of two dimensions. Taking
into account covalent and Coulomb interactions we calculate
the phonon dispersion relations for 2D h-BN. We start from
an infinite 2D hexagonal crystal in the �x ,y� plane �Fig. 1�,
with one B and one N atom per unit cell. The position
of the n��-th unit cell is given by the lattice vector
X� �n���=n1a�1+n2a�2, n�� stands for the pair of integers �n1 ,n2�,
a�1 and a�2 are primitive lattice vectors. The 2D Brillouin zone
with symmetry points �, K, M is shown in Fig. 2. The basic
theoretical quantity in lattice dynamics is the dynamical ma-
trix D�q���, here q��= �qx ,qy� is the 2D wave vector. Here and
in the following we will use the index � for in-plane direc-
tions �i.e., perpendicular to the c� axis of the 3D crystal�, and
the index � for the direction parallel to c�, i.e. out of plane.
Since we allow for ionic displacements in the directions
�x ,y� in plane and z out of plane, the dynamical matrix is of
dimension 6�6 and hence we will get three acoustic and
three optical phonon branches. As usual16,17 we write D as a
sum of covalent contribution F and a Coulomb contribution
C,

Dij
����q��� = Fij

����q��� + Cij
����q��� . �1�

Here ����� labels the ions B, N while i�j�� �1,2 ,3� is a
Cartesian index for the �x ,y ,z� directions. Given the struc-

tural similarity between 2D h-BN and graphene and the lo-
cations of B, C, and N atoms in the periodic table, we evalu-
ate the covalent dynamical matrix F�q��� with an empirical
force constant model which is related to a corresponding
model for graphene.8 The dynamical matrix C�q��� for Cou-
lomb forces is calculated by means of Ewald’s method �see,
e.g., Refs. 16 and 17� which we have adapted to the case of
a 2D ionic crystal. Thereby we have used a 3D Gaussian
charge distribution with range parameter � on each ion site.
As a result we obtain

Cij
����q��� =

1

�m�m��

�ij
����q��� − ����

1

m�
�
��

�ij
����q�� = 0�� ,

�2�

where

�ij
����q��� = �ij

����q����1 + �ij
����q����2. �3�

Here the first and the second term on the right-hand side
�rhs� are given by summations over the reciprocal and direct
2D lattices, respectively. For in-plane displacements where
i , j� �x ,y� we have

�ij
����q����1 =

2�e�
�e��

�

v2D
�
	��

�	� − q���i�	� − q��� j

�	�� − q���
e−i	��·�r��−r����

�erfc	 �	� − q���
�4�


 , �4�

�ij
����q����2 = − e�

�e��
� �3/2�

n���

Hij
�������X� �n��� ��� − X� �n������

�eiq��·�X� �n��� ���−X� �n�����. �5�

Here m� is the mass of the �th ion, e�
� its effective charge.

The 2D vector X� �n����=X� �n���+r�� denotes the equilibrium
position of the ion in the 2D plane, where X� �n��� is the lattice
vector of the n��th unit cell, r�� the position vector of the �th
ion in a unit cell. In Eq. �4� the summation runs over the 2D
reciprocal lattice vectors 	��, v2D=a2�3 /2 is the area of the
2D unit cell, where a=aBN

�3 is the length of a primitive
lattice vector, a= �a�1�= �a�2�, and aBN the nearest neighbor dis-
tance. For 2D h-BN we take the bond length

aBN=1.446 Å.12 The function Hij
��� in Eq. �5� is defined by

Hij
����x�� =

xixj

x2 
 3

x3erfc�x� +
2

��
	 3

x2 + 2
e−x2�
− �ij
 1

x3erfc�x� +
2

��

1

x2e−x2� . �6�

For the case of out-of-plane displacements, i=z , j=z, one
gets

FIG. 1. Structural detail from a h-BN monolayer; a�1 and a�2

primitive lattice vectors.

FIG. 2. 2D Brillouin zone.
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�zz
����q����1 =

2�e�
� e��

�

v2D
�
	��


2��

�
e−�	�� − q���2/4� − �	��

− q���erfc	 	�� − q��

�4�

�ei	��·�r���−r���. �7�

The term �zz
����q��� �2 is still given by Eq. �5�, however since

the equilibrium positions of the ions are in a same plane, one
has

Hzz
����x�� = − 
 1

x3erfc�x� +
2

��

1

x2e−x2� , �8�

in addition the effective charges are e�
� and e��

�
. The elements

Ciz
����q���, i�x ,y, are zero.

We note, as is the case for 3D ionic crystals, that the
divergent term arising in Eq. �5� when �n��� ���= �n���� is
compensated by the same term from �ij

���q��=0�� in Eq. �2�.
On the other hand the 2D case is different as far as the term
arising from 	� =0� in Eq. �4� is concerned in the long-
wavelength limit. The contributions to the dynamical matrix
for in-plane motion are given by

Cij
����q��,	� = 0���1 =

2�e�
�e��

�

v2D�m�m���
1/2

�q���i�q��� j

��q���� 	1 −
�q���
���



+ O��q���3� , �9�

i�j�� �x ,y�. The contribution for the out-of-plane motion in
the long-wavelength limit is obtained from Eq. �7� and reads

Czz
����q��,	� = 0���1 = −

2�e�
� e��

�

v2D�m�m���
1/2 �q���	1 −

1

2

�q���
���



+ O��q���3� . �10�

Both expressions Cij
��� �1 and Czz

��� �1 have a unique limit 0 for
q��→0� , however they are not analytic since their derivatives
with respect to the wave vector components are discontinu-
ous at the � point. The wave number dependence is a con-
sequence of the two-dimensionality but does not depend oth-
erwise on the symmetry of the crystal. A similar behavior is

found for the dynamical matrix of the 2D Wigner crystal.25

The long-wavelength Coulomb part of the dynamical
matrix in three-dimensional ionic crystals is obtained by
performing Fourier transforms in 3D space.16,17 One finds

that Cij
����q� ,	� =0�� is proportional to �1 /v3D�qiqj /q2,

where i�j�� �x ,y ,z�, v3D is the volume of the 3D unit cell,
q2=qx

2+qy
2+qz

2. The limit value depends on the direction of
q� →0� . This feature translates the sample shape dependence
of the Coulomb term in three dimensions,26 the crystal point
group symmetry at � is broken. The Coulomb term is usually
treated as a symmetry-breaking macroscopic field16 and
leads to a splitting of the highest longitudinal and transverse
optical modes at the � point in cubic ionic crystals.27 On the
other hand, since the Coulomb term vanishes in 2D, there is
no symmetry breaking and the phonon frequencies at the �
point can be classified by group theory. Since the point group
of 2D h-BN is D3h, the three optical phonons at � belong to
the irreducible representations A2�+E�. Here A2� corresponds
to the out-of-plane vibrational �ZO� mode while E� corre-
sponds to the degenerate in-plane LO �longitudinal optical�
and TO �transverse optical� modes. The degeneracy of LO
and TO at � is well confirmed by numerical calculations22 on
2D h-BN. The HREELS results of Rokuta et al.11 on an
epitaxial monolayer film of h-BN on Ni�111� exhibit no split-
ting of LO and TO at �, in agreement with theory. In Sec. V
we will show that the nonanalytic part of the Coulomb dy-
namical matrix in the 2D case leads to a linear q�� depen-
dence with positive slope for the LO phonon dispersion,
negative slope for the ZO �out-of-plane� optical phonon
branch, while the TO phonon branch remains flat.

The phonon dispersion relations are obtained from the
solution of the secular equation

�1
2 − D�q���� = 0. �11�

Here 1 is the 6�6 unit matrix. In Fig. 3�a� we show the
phonon branches obtained solely from the covalent forces
dynamical matrix F. For the calculation of the matrix F we
refer to Appendix A, Ref. 9 where now we have to use the
masses mB=10.81 and mN=14.01 �atomic mass units�. The
force parameters which mimic the covalent bond forces are
fr

�n�, f i
�n�, and fo

�n�, with n=1, . . . ,5. They represent the radial

(b)(a)

FIG. 3. Phonon dispersions of 2D h-BN, �a� without Coulomb forces, �b� Coulomb forces included.
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�r� bond-stretching, in-plane �i� and out-of-plane �o� tangen-
tial bond-bending forces between the nth neighbors,
respectively.5,8 In comparison with graphene, we have re-
duced the strength of all force constants fr

�n� and fo
�n� by 15%

and of f i
�n� by 40% �see Table I�. Such a reduction of the

covalent forces is inferred from a comparison of the IXS
results on phonon dispersions in graphite8 and h-BN.13 Al-
though the two 2D crystals are isoelectronic and isostruc-
tural, the in-plane bonding in the homonuclear graphene is
stronger than in the heteronuclear 2D h-BN. While the re-
duction of force constants leads to an overall scaling down of
the phonon frequencies, the major qualitative changes be-
tween the dispersions shown in Fig. 3�a� and the correspond-
ing results for graphene8,9 are due to the different masses.
The results shown in Fig. 3�b� have been obtained with in-
clusion of the Coulomb part C of the dynamical matrix. We
have used effective Born charges eB

�=−eN
�=−0.60e,

eB
� =−eN

� =−0.15e �e is the elementary charge�, in both cases
the static dielectric constant is taken �0=1. The correspond-
ing quantities in Ref. 22 are �Z�

B /��0�=−1.35e �in plane� and
�Z�

B /��0�=−0.41e �out of plane�, where in addition the elec-
trostatic dipole-dipole interaction is considerably reduced by
a switching function. Recent ab initio calculations suggest a
charge transfer �Q=0.429 electrons from B to N atoms in
2D h-BN.28 Effective charges and dielectric constants have
been calculated for 3D h-BN by a first-principles study.19

However there still remain quantitative discrepancies with
experiments29 on bulk h-BN, so far we know of no optical
phonon results on 2D h-BN.

Our choice of the valence force constants and of the ef-
fective charges leads to reasonable values of the optical pho-
non frequencies at the � point. Indeed our calculated values
for the frequencies of the degenerate LO and TO in-plane
modes �1301 cm−1� and for the ZO out-of-plane mode
�814 cm−1� at � are close to the corresponding experimental
values 1371 and 790 cm−1 of 2D h-BN on Ni�111� �Ref. 11�
and to the E2g Raman mode �1370 cm−1� �Refs. 29–31� and
A2u IR mode �783 cm−1� in 3D h-BN.29 Comparing our re-
sults with the ab initio calculated phonon spectra of 2D
h-BN in Ref. 22 and with the in-plane IXS results on 3D
h-BN,13 we note an overall satisfactory similarity for the
evolution of the phonon branches ZA �acoustic out of plane�,
LA �longitudinal acoustic�, TA �transverse acoustic� and ZO.
As a quantitative difference we mention that our ZA
branches are too high at the K and M points of the Brillouin
zone. In agreement with Ref. 13, we obtain a crossing of the
ZO and TA branches near M on the MK axis while in Ref. 22
these three branches cross on the �M axis near M. Concern-
ing the highest optical phonon branches LO and ZO, our

results agree with Ref. 22 on two important points; �i� the
LO and TO modes are degenerate at �, as should be the case
in two dimensions, �ii� comparing Figs. 3�a� and 3�b�, we see
that the Coulomb interaction increases the overbending of
the LO phonon branch. We will return to these points in Sec.
V. As a qualitative difference with Refs. 22 and 13, we find
that the Coulomb interaction prevents a crossing of the LO
and TO modes near M or K. This discrepancy could be due
to a shortcoming of our use of a rigid-ion model. In any case
additional experimental information on the evolution of the
LO and TO modes is needed. In the next Section we will
study the elastic constants and compare our results with
theory and experiment.

III. ELASTIC CONSTANTS

Having obtained analytical expressions of the dynamical
matrix in the last section, we calculate the elastic constants
by means of Born’s method of long waves.16 One starts from
a series expansion of the dynamical matrix in powers of
small q��:

Dij
����q��� = Dij

����0� + i�
k

Dij,k
����1�qk +

1

2�
k,l

Dij,kl
����2�qkql

+ Cij
����q��,	=� 0���1, �12�

where k , l� �x ,y�, � ,��� �B,N�. Here

Dij
����0� = Fij

����0� + Cij
����0�, �13�

Dij
����1� = Fij

����1� + Cij
����1�, �14�

Dij
����2� = Fij

����2� + Cij
����2�, �15�

where we have separated off explicitly the contribution

Cij
����q�� ,	� =0�� �1, Eqs. �9� and �10�. Notice the presence of

the D�1� term in Eq. �12�. This term is due to the absence of
a center of inversion in the 2D crystal. It accounts for the
relative displacements of the B and N sublattices.

It is convenient to introduce three acoustic displacement
vectors in six dimensions,

w�j���i� = �ij�m�

m
, �16�

where i�j�=1,2 ,3, �=B,N, and m=mB+mN is the mass per
unit cell. The corresponding three optical displacement vec-
tors read


�����i� = ��i sgn �� �

m�

, �17�

�=1,2 ,3, where sgn �=+1 for �=B and −1 for �=N,
�=mBmN /m is the reduced mass. The matrix D�0� is sym-
metric with

Dij
����0� = �ijDii

����0�, �18�

and DBN�0�=DNB�0�=−�mB /mNDBB�0�. The optical phonon
frequencies at the � point are given by 
����t ·D�0� ·
�����

TABLE I. Covalent force constant parameters, units eV /Å2.

n fr
�n� f i

�n� fo
�n�

1 21.998 5.010 5.255

2 3.431 −1.811 −0.418

3 −2.564 2.349 0.439

4 0.479 0.077 −0.443

5 0.880 0.099 0.094
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�����D̂��
�0�. The superscript t stands for transposed. Explic-

itly one has

D̂���
�0� � �

i
�
���


������i�Dii
����0�
������i� = �����
�

�0��2,

�19�

where 
1
�0�=
2

�0�, with 
1
�0��
LO

�0� , 
2
�0��
TO

�0� , are the
degenerate in-plane optical modes at � and where

3

�0��
ZO
�0� �
1

�0� is the out-of-plane optical mode. The ele-

ments Dij,k
����1�, k� �1,2� fixed, are different from zero only

for noncentrosymmetric crystals such as graphene and 2D
h-BN. Only elements with ����, i.e. corresponding to dif-
ferent sublattices are nonzero. Hermiticity of the dynamical
matrix implies

Dij,k
BN�1� = − Dji,k

NB�1�. �20�

Transforming the matrix D..,k
�1� by means of the optical or

�and� acoustic displacement vectors, we obtain D̂���,k
�1�

�
����t ·D..,k
�1� ·
�����=0, D̂ij,k

�1� �w� �i�t ·D..,k
�1� ·w� �j�=0. Only the

mixed term D̂�j,k
�1� �
����t ·D..,k

�1� ·w� �j�, i.e.,

D̂�j,k
�1� � �

���
�
ii�


�����i�Dii�,k
����1�w�j����i�� = D�j,k

BN�1�, �21�

where �� �1,2�, j� �1,2�, is nonzero, with D̂�j,k
�1� =−D̂j�,k

�1� .
The elements D�j,k

BN�1� lead to a coupling between optical and
acoustic displacements in the long-wavelength regime.

Deformations of the crystal due to relative displacements
of the sublattices, in casu N and B, are known as internal
strains.16 While it is evident to relate the second-order terms

Dij,kl
����2� in the expansion Eq. �12� to the elastic constants, the

perturbation method for the calculation of the elastic con-
stants Cij,kl where external and internal strains are taken into
account, is originally due to Born. One has16

Cij,kl = �ik, jl� + �jk,il� − �ij,kl� + �ij,kl� . �22�

Thereby one defines “square brackets” and “round brackets�
quantities, which in the 2D case read

�ij,kl� =
1

v2D
�
���

�m�m���
�1/2�Dij,kl

����2�, �23�

and

�ij,kl� = −
1

v2D
�
���

�
hp

�hp
���
�

��

�m���
1/2Dhi,k

����1��
� 
�

��

�m���1/2Dpj,l
�����1�� , �24�

with

�hp
��� = �

�


�����h�
������p�
�
�

�0��2 . �25�

These expressions become particularly transparent in terms
of the acoustic and optical eigenvectors representation:

�ij,kl� =
�2D

2
D̂ij,kl

�2� , �26�

where D̂ij,kl
�2� =w� �i�t ·D..,kl

�2� ·w� �j�; similarly

�ik, jl� = − �2D�
�

D̂�i,k
�1� 1

�
�
�0��2D̂�j,l

�1� . �27�

Here �2D=m /v2D is the �surface-� mass density.
There are two independent elastic constants of a 2D hex-

agonal crystal, they have the dimension of a surface tension
coefficient. Using Voigt’s notation, we write �11 for C11,11
and �12 for C11,22;

�11 = �11,11�2D + �11,11�2D, �28�

�12 = 2�12,12�2D − �11,22�2D + �11,22�2D. �29�

Here the square brackets stand for

�11,ii�2D =
1

2v2D
�mBD11,ii

BB�2� + mND11,ii
NN�2� + 2�mBmN�1/2D11,ii

NB�2�� ,

�30�

with i=1 or 2. Symmetry of the crystal structure implies

�11,11�2D − �11,22�2D = 2�12,12�2D. �31�

The round brackets are given by

�11,11�2D = − �2D
1

�
1
�0��2 �D11,1

BN�1��2, �32�

�12,12�2D = − �2D
1

�
2
�0��2 �D21,2

BN�1��2, �33�

with �11,11�2D= �12,12�2D=−�11,22�2D. These symmetry
relations imply that the elastic constant C12,12, i.e.,

�66 = �11,22�2D + �12,12�2D, �34�

is obtained from the relation �11−�12=2�66.
The longitudinal and transverse sound velocities for in-

plane displacements are related to the elastic tension coeffi-
cients by cl=��11 /�2D and ct=��66 /�2D, respectively.

We recall that �66��2D and �12��2D play the role of
shear modulus and Lamé coefficient, while �11−�66�B2D is
the bulk modulus. Since the elastic properties of a 2D hex-
agonal crystal are isotropic in the crystal plane, Young’s
modulus Y2D and Poisson’s ratio �2D read32

Y2D =
4B2D�2D

B2D + �2D
, �35�

�2D =
B2D − �2D

B2D + �2D
. �36�

We have carried out numerical calculations of the elastic
properties. We use the same parameters as for the calculation
of the phonon branches in the last section. Our results, to-
gether with extrapolations from 3D experimental data and
results from ab initio calculations, are quoted in Table II.
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Note that the values of �11 and �66 in graphene are larger by
roughly 20%.9

To our knowledge, there are no experimental data on the
elastic properties of 2D h-BN, however the elastic moduli of
3D h-BN have been measured by IXS on single crystals.12

The elastic constants c11 and c66 �and hence c12=c11−2c66�
are obtained from in-plane phonon dispersion measurements
by determination of the sound velocities. From Raman scat-
tering experiments under varying pressure on 3D h-BN �Ref.
30� we conclude that the in-plane interactions between ions
�valence and electrostatic� are much stronger than the inter-
actions between ions belonging to different planes. We then
admit as a reasonable approximation �see also Ref. 8� that
the sound velocities V�LA�100�� and V�TA�100��1–20�� ob-
tained from 3D h-BN are representative for 2D h-BN too. We
then have9

�11 �
c

2
c11, �37�

�66 �
c

2
c66, �38�

and similarly for c12, where c11, c12, and c66 are the 3D
elastic constants and where c /2 is the distance between next
neighbor planes in the 3D system. Using the values c
=6.660 Å and c11=811 GPa, c66=321 GPa from Ref. 12,
we arrive at the estimations of �11, �12, and �66 quoted in
Table II. In a similar way we proceed for the elastic constants
from ab initio calculations on 3D h-BN.19,20 Given the values
of �11, �12, and �66, the expressions for B2D, Y2D, and �2D are
calculated by means of the above formulas for the 2D hex-
agonal crystal. In comparing the relative contributions of the
square brackets and round brackets terms �internal strains�
with the elastic tension coefficients, we find that the latter
account for a reduction of the values of �11 and �66 by
�12% and �30%, respectively. We also find that the
contributions of the Coulomb interactions are rather small
��3%� in comparison with the valence forces contributions.

In order to calculate the bending coefficient �b we pro-
ceed as in the theory of bending of thin plates33 and
membranes.32 Expanding the out-of-plane displacement
components of the dynamical matrix up to fourth order in the
wave vector components, we get

D33
����q��� =

1

4!
D33,1111

����4� �qx
2 + qy

2�2. �39�

We transform again to the acoustic basis obtaining

D̂33
�4� = �

���

w�3���3�D33,1111
����4� w�3����3� . �40�

The bending coefficient is then given by

�b =
1

4!
�2DD̂33

�4�. �41�

With the numerical input values given before, we obtain
�b=2.84�10−12 erg which is essentially due to valence
forces; Coulomb interactions are found to be negligible.
We note that the bending coefficient �̃b for graphene
in Ref. 9 is wrong by a factor 2, its value should read
�3.6�10−12 erg.

IV. PIEZOELECTRIC AND DIELECTRIC EFFECTS

Since 2D h-BN is an ionic crystal where the lattice points
are not centers of symmetry, the mechanical and the electri-
cal properties are coupled.16,17 A central role is again played
by the first-order expansion coefficients of the dynamical

matrix, Dij,k
����1�, Eq. �12�. These coefficients lead to a cou-

pling between acoustic and optical phonons in the long-
wavelength regime �see Eq. �21��. The piezoelectric stress
constants for the 2D case are obtained by means of Born’s
long-wavelength theory as

ei,jl � �i, jl� =
1

v2D
�

�����
�

h

�m�Djh,l
����1��hi

����
e��

�m��

, �42�

with dimension charge/length and symmetry ei,jl=ei,lj. There
exists only one independent piezoelectric stress constant in
the case of 2D h-BN,

e1,11 = �2DD11,1
NB�1� 1

�
TO
�0� �2

eB

�mBmN

. �43�

By structural symmetry it follows that

e1,22 = e2,12 = − e1,11. �44�

Numerical calculation with the model parameters of Sec.
II give e1,11=−1.19�10−12 C /cm. Recent ab initio numeri-

TABLE II. Elastic tension coefficients, Young’s modulus, bulk modulus �units 104 dyn /cm�, sound ve-
locities �units km/s� and Poisson ratio of 2D h-BN.

�11 �12 �66 Y2D B2D cl ct �2D

Present theory 33.47 8.92 12.28 31.09 21.20 21.00 12.71 0.267

Results of Ref. 22 34.30a 11.90a 10.70a 30.20a 23.60a 21.00 13.00 0.347a

32.20b 7.60b 12.30b 30.40b 19.90b 0.236b

Estimations from 3D h-BN �Ref. 12� 27.00 5.62 10.69 25.83 16.31 18.86 11.86 0.208

idem from ab initio19,20 31.71 5.64 13.04 30.71 18.67 0.178

aDirect calculations.
bObtained from cl and ct.
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cal work34 on a flexoelectric effect in 2D h-BN quotes
e1,11=−0.118e /aB=−3.57�10−12 which is of the same order
of magnitude. In order to compare our result with values of
piezoelectric constants in 3D we use again dimensional ar-
guments �see Eqs. �37� and �38��. We consider the quantity

2

c
e1,11 � e1,11�3D, �45�

where c /2=3.33 Å is the distance between two
neighboring planes in 3D h-BN. We obtain
e1,11 �3D=−0.357�10−4 C /cm2 which is to be compared
with the experimental value35 of the piezoelectric stress con-
stant in � quartz, e1,11=0.171�10−4 C /cm2.

The dielectric susceptibility for a 2D crystal in the long-
wavelength limit reads

�ij =
1

v2D
�
���

e�

�m�

�ij
���

e��

�m��

. �46�

In the present case only diagonal elements are nonzero,

�ii =
�2D

�mBmN

�eB
�i��2

�
i
�0��2 , �47�

where eB
�=0.60e for i=1 or i=2 with 
1=
2=
TO

�0�

=1301 cm−1 and eB
� =0.20e for i=3 with 
3=
ZO

�0�

=814 cm−1. We obtain the numerical values
�11=�22=5.51�10−10 cm, �33=0.40�10−10 cm.

In 3D crystals it is known that the piezoelectric coupling
leads to a modification of the sound velocity. Here we have
studied the coupled system of equations for acoustic and
optical phonons, using all terms on the right-hand side of Eq.
�12�. Carrying out perturbation theory as shown in Ref. 36,
Appendix B, we obtain a closed equation of motion for the
acoustic displacements,

��2D
2�ij − qkql
�ik,jl + 2�
qsqt

�q���
es,ilet,jk��sj�q��,
�

= −
Fi�q��,
�

v2D
. �48�

Here sj�q�� ,
� is the Fourier transform of the jth component
of the acoustic in-plane displacement, Fi�q��� the ith external
mechanical force component. Explicitly we have

��2D
2 − q1
2
�11 + 2�

q1
2

�q���
�e1,11�2��s1�q��,
�

= −
F1�q��,
�

v2D
, �49�

��2D
2 − q1
2
�66 + 2�

q2
2

�q���
�e2,12�2��s2�q��,
�

= −
F2�q��,
�

v2D
. �50�

Hence in 2D h-BN the corrections to the tension coefficients
�11 and �66 and equivalently to the sound velocities vanish
with q�� in the long-wavelength limit, while in the 3D crystal

these corrections remain finite and depend in a complicated
way on the direction of the wave.37 This difference between
the 2D and the 3D crystal is a direct consequence of the
different non-analytic behavior of the Coulomb part of the
dynamical matrix as mentioned in Sec. II, Eq. �9�. As a con-
sequence of the vanishing of the piezoelectric corrections to
�11 and �66, the elastic sum rule derived in Ref. 38 for the
case of nonionic crystals is still valid and reads for 2D h-BN

v2D

m
�ij,kl lim

q��→0�

qjql�

−�

+� d


2�

�̂kp�q��,
�

 � = �ip, �51�

where �11,11��11 and �12,12��66. The quantity �̂kp�q�� ,
� is
the acoustic dynamic displacement-displacement susceptibil-
ity.

V. OVERBENDING OF OPTICAL PHONONS

In graphene �in-plane phonon dispersions measured by
inelastic x-ray scattering on graphite8,39� it is found that the
highest phonon branch which corresponds to a longitudinal
optical phonon has maximum frequency away from the �
point. This phenomenon is known as overbending.7,40 Within
the valence force model we find for graphene that overbend-
ing, characterized there by an upward curvature �i.e., a qua-
dratic wave number dependence� when going from the �
point into the Brillouin zone, occurs only if fifth-order neigh-
bors for in-plane stretching and bending forces are included.
Nonetheless the highest optical phonon branches near the �
and the K points of the Brillouin zone are still too flat in
comparison with experimental results which show steeper
slopes.8,39 The softening of the E2g mode at � �and of A1� at
K� is attributed to strong electron-phonon coupling in sp2

bonded carbon.39,41,42 These features have been identified
and analyzed as Kohn anomalies.43 From experiment and ab
initio calculations it is inferred that near � the frequency of
the highest optical branch in graphene and graphite is of the
form �
q� =�
�+��q+O�q2�. Equivalently the derivative of
the frequency with respect to the wave vector exhibits a dis-
continuity at �, characterized by the coefficient �� which is
proportional to the square of the electron-phonon coupling.43

Since h-BN is an insulator, electron-phonon coupling and
a concomittant Kohn anomaly should not cause a nonana-
lytic behavior of the dynamical matrix. However, as we have
shown in Sec. II, the Coulomb interaction yields a nonana-
lytic contribution to the dynamical matrix in case of a 2D
ionic crystal. Here we will show by a rigorous analytic cal-
culation that the frequency of the LO phonon is of the form

�q���=
�+��q���+O�q�

2 �. In Sec. III we have projected the
dynamical matrix at � onto the subspace of optical displace-
ments, with the result

D̂���
�0� = �����
�

�0��2, �52�

where ������ �1,2 ,3�. We recall that the in-plane LO and
TO phonons are degenerate at �: 
LO

�0� =
TO
�0� , while the out-

of-plane displacements have frequency 
ZO
�0� �
TO

�0� . Similarly

we project the matrix �Cij
����q�� ,	� =0�� �1� with elements given

by Eqs. �9� and �10� onto the space of optical displacements,

THEORY OF ELASTIC AND PIEZOELECTRIC EFFECTS… PHYSICAL REVIEW B 80, 224301 �2009�

224301-7



Ĉ��� = 
����t · C�q��,	� = 0���1 · 
�����. �53�

Restricting ourselves to terms of first and second order in the
wave vector we obtain for the in-plane optical modes,

Ĉij =
2��eB

��2

v2D�

qiqj

�q���	1 −
�q���
���


 , �54�

for i�j�� �1,2� and for the out-of-plane optical mode

Ĉzz = −
2��eB

� �2

v2D�
�q���	1 −

1

2

�q���
���


 . �55�

Treating Ĉ as a perturbation to the optical dynamical matrix

D̂�0� at �, we solve the 3�3 secular determinant

�D̂���
�0� + Ĉ��� − ����


2� = 0. �56�

We obtain the roots 
1
2, 
2

2, and 
3
2. The corresponding

square roots are the perturbed optical phonon frequencies,


LO�q��� = 
LO
�0� + cLO�q���	1 −

�q���
���


 , �57�


TO�q��� = 
TO
�0� , �58�


ZO�q��� = 
ZO
�0� − cZO�q���	1 −

�q���

2���

 , �59�

where cLO=
��eB

��2

v2D�
LO
�0� and cZO=

��eB
� �2

v2D�
ZO
�0� . Here, the frequencies


LO and 
TO are degenerate at �, with symmetry E�. The
quantities cLO and cZO have the dimension of velocities. We
see that 
LO increases and 
ZO decreases linearly with �q���
near �, on the other hand 
TO is flat. Further away from �,
the quadratic decrease of 
LO with �q��� is an indication of
overbending, however overbending is already present in ab-
sence of Coulomb interactions �see Fig. 3�a��. As already
discussed in Sec. II, the HREELS experiments on a mono-
layer h-BN on Ni�111� do exhibit the degeneracy of the LO
and TO modes at �. Although the LO mode increases with
increasing wave vector near �, the experiments11 do not al-
low to identify a linear increase. However we would like to
remind that the linear slope is a weak effect �since the charge
transfer from B to N is relatively small� and possibly below
the then available experimental resolution.

The density of states of the modes LO and ZO near the �
point is given by44

gs�
� =
1

�2��2� dSq��

��� 
s�q����
, �60�

where the index s refers to LO and ZO. In Eq. �60� we
have taken into account that the Brillouin zone is
two-dimensional, dSq��

= �q���d� is the “surface element,” i.e.,
the arc sustained by the angular element d�. Using
��� 
s�q����=cs and integrating over the polar angle, we obtain

gs�
� =
1

2�

�q���
cs

, �61�

and hence by means of Eq. �57�

gLO�
� =

 − 
LO

�0�

2�cLO
2 , 
 � 
LO

�0� , �62�

gLO�
� = 0, 
 � 
LO
�0� , �63�

and by means of Eq. �59�

gZO�
� =

ZO

�0� − 


2�cZO
2 , 
 � 
ZO

�0� , �64�

gZO�
� = 0, 
 � 
ZO
�0� . �65�

Experimental knowledge of the density of states gLO and gZO
would lead to a determination of the effective charges eB

� and
eB

� , respectively.
The group velocity of the LO mode still depends on the

direction of the wave vector, with

vi
LO�q��� =

�
LO�q���
�qi

= cLO
qi

�q���
, �66�

i� �1,2�. The slope cLO, calculated with the model param-
eters of Sec. III, has the numerical value 1.94 km/s. As a
consequence we expect that the LO optical phonons contrib-
ute to the heat current and hence to thermal conductivity.

VI. CONCLUDING REMARKS

We have given a theoretical lattice dynamical treatment of
2D h-BN which is based on a crystal model with partially
covalent and ionic bonding. The calculated phonon spectra
�Fig. 3�b�� are reasonably close to the in-plane IXS measure-
ments of phonon dispersions in 3D h-BN �Ref. 13� and to the
results of ab initio calculations.13,22 However our main pur-
pose has been the analytic implementation of Born’s long-
wavelength method to the case of a noncentrosymmetric 2D
ionic crystal. Since the crystalline structure of 2D h-BN with
two atoms per unit cell is the most simple, it was possible to
derive transparent analytic expressions for various physical
quantities such as elastic tension coefficients and piezoelec-
tric stress coefficients. In particular the important role of the
linear term iqkDij,k

�1�BN in the long-wavelength expansion of
the dynamical matrix �Eq. �12�� has been elucidated. It has
been shown how this term leads to a coupling of acoustic and
optical phonons. The resulting corrections to the elastic ten-
sion coefficients �11 and �66 �round bracket terms in Eqs.
�28� and �34�� are found to be quantitatively important. The
elastic phenomena are mainly determined by the covalent
part of the dynamical matrix, the Coulomb contribution is
quantitatively small. As is to be expected, the evolution of
the optical phonon branches, a.o. crossing of LO and TO
modes, is rather sensitive to the choice of effective charges.
Our restriction to the case of a rigid-ion model is possibly the
reason of discrepancies with the LO-TO crossings observed
in ab initio calculations.13,22 In any case additional experi-
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mental results on 2D h-BN are needed to clarify the situa-
tion. Notwithstanding these shortcomings, we have demon-
strated by rigorous calculations that the LO and TO modes
are degenerate at the � point. In addition the nonanalytic
term of the Coulomb part of the dynamical matrix in two
dimensions leads to a linear increase with q�� near � of the
LO branch and hence to an enhancement of overbending. In
addition we find a decrease of the ZO branch as a function of
the wave vector near �, while the TO branch remains flat.
These findings are in agreement with ab initio calculations
where an enhancement of overbending by Coulomb interac-
tions has been found as well.22 We have calculated the den-
sities of states of the LO and ZO modes in the linear q��

regime near � and have suggested measurements of the ef-
fective charges. Finally we have calculated the piezoelectric
stress coefficient with the result e1,11=−1.19�10−12 C /cm.
Extrapolation to a 3D crystal leads to a large value. We have
found that in 2D h-BN the sound velocities and hence the
tension coefficients are not changed by piezoelectric effects

in the long-wavelength limit. This is a consequence of the
vanishing of the long-wavelength Coulomb part of the dy-
namical matrix. The elastic sum rule which was originally
derived for a nonionic and nonprimitive crystal remains
valid. We conclude that from an elastic point of view a 2D
ionic crystal behaves as a nonionic crystal. The situation is
different for the optical modes where the Coulomb term
leads to a linear �q��� dependence. Our preliminary calcula-
tions on multilayer systems indicate that the slopes of the
branches of the optical phonon band increase with the num-
ber of layers. This problem is currently under investigation.
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